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TECHNICAL NOTE D-

OPTIMUM RUNWAY ORIENTATION
RELATIVE TO CROSSWINDS

INTRODUCTION

Runway orientation is undoubtedly influenced by a number of factors —
perhaps winds, terrain features, population interference, etc. In some
cases, the frequency of occurrence of crosswind components of some signi-
ficant speed may have received insufficient consideration. If, for example,

a runway for the space shuttle vehicles is being planned, it may be prudent
to consider the optimum runway orientation to minimize crosswind com-
ponents of, for example, 20 knots. Aligning the runway with the prevailing
wind will not ensure that crosswinds of this magnitude will be minimized.

In fact, two common synoptic situations (one producing light easterly winds,
and the other causing strong northerly winds) might exist in such a relation-
ship that a runway oriented with the prevailing wind might be the least use-
ful to an aircraft constrained by crosswind components 2 20 knots. Two
methods (one empirical, the other theoretical) of determining the optimum
runway orientation to minimize critical crosswind component speeds are
described below. Both methods gave identical results for the Cape Kennedy,
Florida, winds shown in Table 1.

EMPIRICAL METHOD

The following paragraphs outline a short procedure (one requiring
only a desk calculator and a wind rose) for determining the best runway
orientation relative to some specified crosswind component.

From the ordinary wind rose (Table 1), the percentage frequency
of a number of wind speeds and directions can be obtained. For this pro-
cedure, the percentage frequency or number of cases in each class interval
or '"box" is assumed to be located at the class mark,

It is apparent that, if two of the reported wind directions (opposites)
are chosen as a runway orientation, the crosswind component contributed by
each box can be obtained from the product of the wind speed and the sine
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of the angle between the wind direction and the runway orientation. Since

wind directions are usually given to 16 points, the angles between the wind
direction and the runway will be 22.5, 45, 67.5, and 90 deg. For example,

if the runway orientation is chosen as EW, then all ENE, ESE, WNW, and

WSW winds will be 22. 5 deg off the runway. Likewise, NE, SE, NW, and

SW will be 45 deg off, NNE, SSE, NNW, and SSW will be 67.5 deg off, and N

and S will be 90 deg off. From Figure 1 it is apparent that each wind direction
and wind speed will make a contribution to the total percent frequency of cross-
wind components. Since several wind directions in the same wind speed category

13.4 KNOTS
9.4 KNOTS

et — —

13.4 KNOTS
—_——
10.3 KNOTS

Figure 1. Runway crosswind component calculation.




will produce the same crosswind component, these boxes should be summed.
For example, under the 10-19 category, sum NE, SE, NW, and SW (2180 +
3841 + 2866 + 1548 = 10 435) to obtain the frequency of crosswind components
of 10. 3 knots (14.5 sin 45 deg = 10. 3). This process should be continued until
all boxes except E-W have been used to compute a crosswind component.

In summary, the crosswind component computation procedure consists
of the following steps:

1. Compute all possible crosswind components — the product of each
wind speed and the sine of 22.5, 45, 67.5, and 90 deg.

2. Sum all boxes that contribute the same crosswind component for a
specified runway orientation. Compute the frequency and percent frequency
for each crosswind speed.

3. Order the crosswind component speeds from the largest to the
smallest and tabulate the percent frequency of occurrence opposite each cross-
wind component.

4. Form the cumulative percentage frequency (CPF) from the values
tabulated in step 3., starting with the highest wind speed. This CPF gives a
description of the crosswind components for a single runway.

5. Interpolate the CPF for the desired wind speed. This interpolated
value gives the probability in percent of equaling or exceeding the specified
crosswind component for that runway orientation. From the few cases
examined, it appears that the interpolation should be made assuming a normai
distribution.

Of course, the procedure must be repeated for each pair of opposite
wind directions (runway orientations) to determine the optimum runway
orientation relative to a critical crosswind component.

This procedure was applied to the Cape Kennedy annual wind rose
shown in Table 1, except that hurricane associated winds = 50 knots were
removed on the premise that landing operations would not be conducted during
such periods. (Table 1 was prepared from hourly peak wind measurements
made from September 1958 through June 1969.) Results of the analysis
(Fig. 2), for which 20 knots was selected as the critical crosswind speed,
indicate that the hest runway orientation relative to speeds of this magnitude
is about 150 to 330 deg true.
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Figure 2. Cape Kennedy percentage frequency of exceedance of peak
crosswind components = 20 knots versus runway orientation.

THEORETICAL METHOD

For Cape Kennedy, the assumption has been made that wind components
are bivariate normally distributed; i.e., a vector wind data sample is resolved
into wind components in a rectangular coordinate system and the bivariate nor-
mal elliptical distribution is applied to the data sample of component winds.
For example, let X; and x, be normally distributed variables (the wind compo-
nents at Cape Kennedy) with parameters (¢, oy) and (¢, 0;). &4 and ¢, are the
respective means, while oy and ¢, are the respective standard deviations. Let
p be the correlation coefficient, which is a measure of the dependence between
x; and X,. Now, the equation of the bivariate normal density function is

p(aen) (m2m) L (ass)]f L

Let o be any arbitrary angle in the rectangular coordinate system and
let the sample estimates of ¢4, £, 0y, 05 and p be denoted by Xj, X,, SX s
1

- - 2
p(xiy x) = [210,0, (1= 92 exp {‘lzu -ph]! [(M>

Sx , and r . respectively. From the statistics in the (x4, X,) space, the
2 1X2

statistics for any rotation of the axes of the bivariate normal distribution
through any arbitrary angle ¢ may be computed as given below [1].




Let (yi, ¥,) be the new space after rotation with orthogonal axes y,
and y,. Let Y 15 Yo, sy R Sy ,and r be the means, standard deviations,

1 2 2
and correlation coefficient in the (y , y ) space. From Reference 1,
12

= X, cosa +X;sina

iy
|

Y, = Xy cos - X sing

1/2
S = [S? cos%y+ 8% sin%y + 28 cos ¢ sin @
Y1 Xy X9 X1X9
, (2)
2 2 2 in2 . /2
S = [8° cos‘y+S° sin‘g - 28 cos ¢ Sin o
Yo X2 X4 X1Xo
S
ryy s S ’
V2 Y1 V2
where S2 , S, and S are the variances and covariance in the (x;, X,)
X1 Xz Xlxz

space and Syly is the covariance in the (y;, y,) space.
2

In equations (2), all statistics on the right side are available for Cape
Kennedy or may be computed from existing data (Table 1).

Equations (2) give the statistics in the (y;, y,) space (this is the space
after rotation through any angle ) that defines the bivariate probability den-
sity function (1).

The existing wind statistics for Cape Kennedy (Table 1) are for the
reference angle @ = 90 deg; i.e., the (x;, X,) space is for ¢ = 90 deg.

Let Ao denote the desired increments for which runway orientation
accuracy is required; e.g., one may wish to minimize the probability of cross-
winds with a runway orientation accuracy down to Aq¢ = 10 deg. This means
we must rotate the bivariate normal axes through every 10 deg beginning at
a = 90 deg lthe {x,, x,) spacel. It is only necessary to rotate the bivariate
normal surface through 180 deg, since the distribution is symmetric in the



other two quadrants. This process will result in 18 sets of statistics in the
(v1> ¥, space obtained from equations (2). y; is the head wind component
while y, is the crosswind component. Since we are concerned with minimizing
the probability of crosswinds (y,) only, we now examine the marginal distri-
butions p(y,) for the 18 orientations (a ). Since p(y;, ¥,) is bivariate normal,
18 marginal distributions p(y,) must be univariate normal:

o(v) = [oa(2) V2] ™ e {-3[v2-£2/07)7} (3)

£, and o, are replaced by their sample estimates 5_(2 and Sy . Now, let
2

Y,-Y
2= (4)
Yo

where y, is the critical crosswind of interest. z is a standard normal variable
and the probability of its exceedance is easily calculated from tables of the
standard normal integral. Since a right or left crosswind (y,) is a constraint
to an aircraft, the critical region (exceedance region) for the normal distribu-
tion is two-tailed; i.e., we are interested in twice the probability of exceeding
ly,l. Let this probablity of exceedance or risk = R.

A computer program is available for computing the statistics in the
(v1s ¥,) space defined by equations (2), the integral of equation (3), and the
risk R (see Appendix A). The Cape Kennedy data given in Table 1 are used as
an example. The input to the program is }_(1 = -1,775, X, = -0.210,
S =9.230, S = 9,658, r = -0.145, and Ao = 10 deg. Let the crit-

X4 Xq XXy

ical crosswind component x, = 20 knots as in the empirical example in the
preceding section. To obtain a valid comparison to the empirical probability,
we will compute R = the probability of exceeding or equalling x, = 20 knots.
Table 2 summarizes the runway orientation angles o, the standard normal
variate z, and the risk R for Cape Kennedy.

For this example, the risk R = 5.63 percent of exceeding or equalling
a 20-knot crosswind is a minimum occurring at the runway orientation
a = 150 - 330 deg. This theoretical result verifies the empirical conclusion
arrived at in the previous section,




TABLE 2. SUMMARY OF RUNWAY ORIENTATION (« ) VERSUS
RISK (R), CAPE KENNEDY.

o R o R
(deg) z (%) (deg) z (%)
90 1.57 | 11.53 180 | 1.82 | e.91
100 1.65 | 9.93 190 | 176 | 7.79
110 1.72 | 8.47 200 | 171 8.77
120 1.80 | 7.25 | 210 | 1.66 | 9.76
130 1.86 | 6.36 220 | 1.61 | 10.69
140 1.89 | 5.82 230 | 1.58 | 11.48
150 1.91 | 5.63 240 | 1.55 | 12.07
160 1.90 | 5.78 250 | 1.54 | 12.45
170 1.86 | 6.22 260 | 1.53 | 12.61

The method described to determine the orientation of a runway which

will minimize the probability of critical crosswinds is accurate and expedient.
The procedure described may be used for any station. Only parameters esti-
mated from the data are required as input. Consequently, many runways and
locations may be examined rapidly.

CONCLUSIONS

Either the empirical or theoretical method described in this report
may be used to determine an aircraft runway orientation that minimizes the
probability of critical crosswinds. Again, it is emphasized that the wind
components must be bivariate normally distributed to use the theoretical
method. The Cape Kennedy wind component raw data were not available for
the example used in this report. The bivariate normal assumption may or
may not be a good assumption. However, ihe Cape Kennedy sample illustrates



the method. The agreement between the theoretical and empirical methods

is very good. As shown by Figure 2 and Table 2, the minimum and maximum
probabilities occur at the same azimuths for both methods. The minimum
risk of 5. 63 percent for the theoretical method occurs at 150 deg. The mini-
mum risk for the empirical approach also occurs at 150 deg as shown by
Figure 2. The empirical risk is approximately 4. 7 percent. The maximum
risks for the two methods also occur at approximately the same orientation.,
The maximum theoretical risk of 12. 61 percent occurs at 260 deg, while the
maximum empirical risk of about 7. 6 percent occurs at 250 deg. One may
view the differences in the theoretical and empirical probabilities as a measure
of the departure of the data from normality.

In practical applications, the following steps are suggested:

1. Test the component wind samples for bivariate normality if these
samples are available. See Reference 2 for bivariate normal goodness-of-fit
tests. !

2. If the component winds are available and cannot be rejected as
bivariate normal using the bivariate normal goodness-of-fit test, use the
theoretical method since it is more expedient and easily programmed.

3. If the component wind data samples are not available and there is
doubt concerning the assumption of bivariate normality of the wind components,
use the empirical method.

1. H. L. Crutcher and L. W. Falls: Multivariate Normality. 1971 (to be
published).
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APPENDIX. COMPUTER PROGRAM FOR OPTIMUM RUNWAY
ORIENTATION RELATIVE TO CROSSWINDS

Legend

o Runway orientation

a (R) Orientation or angle at which the wind component statistics are
computed from the data sample

X, Mean of the head-tail winds at orientation « (R)
X, Mean of the crosswinds at orientation o (R)
S, Standard deviation of head-tail winds at ¢ (R)
1
S, Standard deviation of crosswinds at o (R)
2

Covariance at o (R)

X1Xq
Correlation coefficient at o (R)
XiX,
3-{1 Mean of the head-tail winds at orientation o
S_f'z Mean of the crosswinds at orientation «
S; Variance of the head-tail winds at
1
Sy Standard deviation of the head-tail winds at o
1
S; Variance of the crosswinds at o
2
Sy Standard deviation of the crosswinds at o
2
S Covariance at orientation o
Y1y

12




Correlation coefficient at o

The first Y2 is taken and the program is utilized with the starting «.

Yi¥a
Y2 Critical crosswind
z Standard normal variable
F (y,) Normal distribution function
R Risk of exceeding |y,|
INPUT

SALP Starting o
ALPR oR
XB1 X,
XB2 X,
SX1 le
SX2 S

X2
RX1X2 XX,
DALP Aa
EALP End or Maximum o
NV No. of Y2
Y2 Table of Y2
a is then increased by DALP and the program i

lized again.

13



repeated until EALP (maximum @) is reached. The next Y2 is taken and the
process is repeated. This is continued until all of the Y2's have been used.
A transfer is then made to STATEMENT to see if more data are to be read
in. If not, the program terminates. Usually Y2 is the only data that vary.

Note: The STATEMENT following STATEMENT 10 is an end-of-file
check. I there are no more data the program terminates, This end-of-file
test may not be compatible with other computers.

George C. Marshall Space Flight Center

National Aeronautics and Space Administration
Marshall Space Flight Center, Alabama 35812, June 23, 1972
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“The aeronantical and space activities of the United States shall be

conducted so as to contribute . .

. t0 the expansion of buman knowl-

edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered imporrant,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important

T . . s
coniripution to exXistifig kﬁﬁw!cdge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include conference proceedings;
monographs, data compilations, handbooks,
sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and

Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546




